food_scanning/groq_module.py
2025-02-28 12:36:45 +05:30

66 lines
1.8 KiB
Python

from dotenv import load_dotenv
import os
from groq import Groq
import json
# Load environment variables
load_dotenv()
# Initialize Groq client
client = Groq(
api_key=os.getenv("GROQ_API_KEY"),
)
def chat_with_groq(prompt: str, model: str = "llama-3.3-70b-versatile") -> str:
try:
# Create a chat completion
chat_completion = client.chat.completions.create(
messages=[
{
"role": "system",
"content": "you are a helpful AI engineer assistant."
},
{
"role": "user",
"content": prompt
}
],
model=model,
)
# Return the response content
return chat_completion.choices[0].message.content
except Exception as e:
return f"An error occurred: {e}"
def groq_module_fun(resume_prompt, base64_image):
completion = client.chat.completions.create(
model="llama-3.2-90b-vision-preview",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": resume_prompt
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
},
}
]
}
],
temperature=1,
max_completion_tokens=1024,
top_p=1,
stream=False,
response_format={"type": "json_object"},
)
# Access the response here inside the function
api_response = completion.choices[0].message.content
return api_response