# Ayurveda Chatbot using LLaMA and RAG This project is an interactive Ayurveda chatbot that uses a **Retrieval-Augmented Generation (RAG)** pipeline powered by the **LLaMA language model via Groq**. The chatbot provides Ayurvedic knowledge and answers user queries based on pre-trained PDF content. --- ## Features - **PDF Knowledge Base**: Pretrained on Ayurvedic texts for domain-specific answers. - **RAG Pipeline**: Combines FAISS vector retrieval and LLaMA for context-aware responses. - **Streamlit Interface**: Easy-to-use frontend for interacting with the chatbot. --- ## Requirements - Python 3.8+ - GPU support (optional but recommended for faster LLM inference) - LLaMA model via Groq --- ## Installation ### 1. Clone the Repository ```bash git clone https://git.digimantra.com/SHREY/AyurBot.git cd AyurBot ``` ### 2. Create and Activate a Virtual Environment On Linux/macOS: ```bash python3 -m venv env source env/bin/activate ``` On Windows: ``` python -m venv env env\Scripts\activate ``` 3. Install Dependencies ```bash pip install -r requirements.txt ``` 4. Set .env file Usage 1. Preprocess PDF and Create FAISS Index Ensure the PDF file (e.g., ayurveda_text.pdf) is placed in the project directory. Run the backend script to preprocess the data and create a FAISS index: ```bash python3 backend.py Book1.pdf Book2.pdf --index-path faiss_index ``` 2. Start the Chatbot Launch the Streamlit interface: ```bash streamlit run frontend.py ``` Access the chatbot in your browser at http://localhost:8501.